1. Pu, Y*., Chen, J., Jiang, D. et al. (2022). Improved Method for Acoustic Emission Source Location in Rocks Without Prior Information. Rock Mech Rock Eng 55, 5123–5137 2. Chen, J., Ye, Y., Pu, Y*., Xu, W., & Mengli, D. (2022). Experimental study on uniaxial compression failure modes and acoustic emission characteristics of fissured sandstone under water saturation. Theoretical and Applied Fracture Mechanics, 119, 103359. 3. Chen, J., Zhu, C., Du, J., Pu, Y*., Pan, P., Bai, J., & Qi, Q. (2022). A quantitative pre-warning for coal burst hazardous zones in a deep coal mine based on the spatio-temporal forecast of microseismic events. Process Safety and Environmental Protection, 159, 1105-1112. 4. Du, J., Chen, J., Pu, Y*., Jiang, D., Chen, L., & Zhang, Y. (2021). Risk assessment of dynamic disasters in deep coal mines based on multi-source, multi-parameter indexes, and engineering application. Process Safety and Environmental Protection, 155, 575-586. 5. Pu, Y., Chen, J., & Apel, D. B. (2021). Deep and confident prediction for a laboratory earthquake. Neural Computing and Applications, 33(18), 11691-11701. 6. Pu, Y., Apel, D. B., Liu, V., & Mitri, H. (2019). Machine learning methods for rockburst prediction-state-of-the-art review. International Journal of Mining Science and Technology, 29(4), 565-570. 7. Pu, Y., Apel, D. B., Szmigiel, A., & Chen, J. (2019). Image recognition of coal and coal gangue using a convolutional neural network and transfer learning. Energies, 12(9), 1735. 8. Pu, Y., Apel, D. B., & Xu, H. (2019). Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier. Tunnelling and Underground Space Technology, 90, 12-18. 9. Pu, Y*., Apel, D. B., & Hall, R. (2020). Using machine learning approach for microseismic events recognition in underground excavations: Comparison of ten frequently-used models. Engineering Geology, 268, 105519. 10. 陈结,杜俊生,蒲源源,等.冲击地压“双驱动”智能预警架构与工程应用[J]. 煤炭学报,2022,47(2):791-806.
|